Section I Summary presents findings that indicate that the designers of Teotihuacan were Mayan. Identification was made possible by isolating the unit of measure used by the constructors. This permitted comparison of redundant dimensions in the architecture, which led to deduction of the mathematical capabilities of the designers. Astronomical counts form a chronological model of the solar system.

1.) A unit of linear measure was found: the Standard Teotihuacan Unit (STU) of $1.0594(6)$ meters (41.7111 English inches.) More than 7,000 conversions were made of dimensions in the “Ceremonial” Zone: $1,924,582$ square meters ($1,714,608$ square STU = $756 \times 2,268$ STU.) Rounding of dimensions of stone structures were held to less than the official photogrammetric aerial map restoration (accuracy, scale of 1:2000, is $+/-$ 50 centimeters (see Appendix 3.) Many repeating dimensions are factored by prime numbers 2, 3, 5 and 7.

2.) Dimensions of Teotihuacan appear in the Mayan Dresden Codex, pp. 71 to 73, in the form of 13 counts, corrections every 21,600 days (three Katuns) to obtain 59-year Jupiter/Saturn conjunction counts as multiples of 21,546 days, a Mayan approximation. To achieve precision Mayans used integral numbers, later corrected by adding or subtracting integral days after long-term lapses.

3.) The design triangle of Teotihuacan is formed by the two largest pyramids and the Great Avenue. This triangle defines two 378-day Saturn orbits as 756 STU, the number of 399-day Jupiter orbits for the planet to circle one-third of the Zodiac as 720 STU; and the base leg 231 STU, the number of Katuns to reach the eleventh elapsed count of 400 Saturns of $151,200$ days between zero reference in 3,114 B.C. and the 4,400th Saturn in 1,441 A.D. The twelfth and last date was in May of 1,855 A.D. for 4,800 Saturn orbits (uncorrected.)

4.) The “Ceremonial” Zone presents (north/south) the 13-Katun count 93,600 days, encoded twice as “936 STU.” Also shown is a Mayan
ABSTRACT - SECTION I (Contd.)

Oxlahkatun of 1,872,000 days encoded as “1,872 STU.” Distances for Mercury, Venus and Mars orbital counts are given in STU.

5.) In three dimensions the Zone registers volumes in cubic STU that I have named “Numerical Arks.” The volume of this integral numerical box “contains” Saturn synodic orbits, Jupiter synodic orbits and Jupiter/Saturn conjunctions of 7,182 days (one Katun minus 18 days.) “Ark” volume of height 57 STU can be factored to give the reduced scaled area of an earth sphere, the synodic orbital time of the moon and the number of visible Jupiter/Saturn conjunction counts (every third conjunction.)

6.) Painted murals exhibit Mayan solar eclipse day-counts (Dresden Codex.) On factoring the total count by the Jupiter number 720 and the synodic orbit of Mercury of 117 days (Dresden Codex) the mural renders the same precision lunar orbit given by the Dresden Codex and by stone glyphs carved at Palenque’s Palace: 29.5308642 days.

7.) Mayan Long Counts that give anniversary dates for twelve sets of 400 Saturns (multiples of 151,200 days = 1.1.0.0.0) are the overall Teotihuacan design basis, that also rests on 378 STU, one side of the “Citadel,” that we believe was a “Great Quadrangle of Saturn.”

8.) Dating at Teotihuacan is proposed, based on registers of 400-Saturn anniversaries at Copán and Palenque (631 A.D.) and at Edzna recorded in 1,027 A.D. (see Fig.5, pp.16, Section I.)

9.) This Summary proposes significant new Mayan dates (Fig.5,) importance of the number “9” (Fig.12) and illustrations of the corrected Mayan Zodiac, pp. 23-24, Paris Codex (see Figs. 7 & 10.)

10) For additional data, please consult references listed in the partial Bibliography, Appendix 2, Section I.

ORIGINAL FILE REF: 01-12/TEO
DISK: MAYTRESU-05T2ED // reedited 09-VIII-06
Teotihuacan is a monumental pyramidal zone forty-five kilometers from downtown Mexico City, less than an hour by car. Data showing the 192-city-block area to be Mayan was gathered between 1971 and 1984. More indications were found in 1996 and 1998. Additional confirmations appeared in 2001, 2002, 2003, 2004 and 2005 (see Bibliography, pp.22-26, below and supplemental Bibliography, Section III, p.29.)

Ongoing research was compared by studying Mayan astronomical and calendrical data. Field research included 352 visits to the Teotihuacan Valley (1947 to 2003) and over two hundred field excursions between 1971 and 2003.

Dimensions were laid out using a unit of one meter, six centimeters: 1.0594(6) m., named a Standard Teotihuacan Unit (STU.) The largest single structure is a quadrangle whose side in STU equals the number of days (earth revolutions) for Saturn to reappear overhead: 378 = 6 times 7 times 9.

It was recognized that a great rectangle forms the “Ceremonial Zone,” measuring not only two by six orbits of Saturn but also twelve Great Quadrangles whose four sides total a whole number: four times 378; i.e., 1,512. This number defines time periods, spherical areas, geometrical codes and counts of events.

The builders laid out a series of 36 three-dimensional rectangular boxes that I have named "Numerical Arks."
MAYAN TREASURE

An “Ark” can "contain" a series of numbers covering more than 250,000 years of solar system planetary relationships.

Mayans used the same number for differing time and space measurements. Enclosed in an “Ark” 57 STU high is a factor for calculating the moon’s orbit. This number is "137," a constant used by modern physics.

Belief in “scientific” knowledge can be a fatal supposition: to deny that any past civilization could possibly know as much as we. Every day more previously tabú “possibilities” are converted into probabilities by modern researchers. By no means does this imply that Mayans knew the hydrogen fines constant.

In basic research results are unknown, therefore cannot be predicted until after ingenious experiments have shown why, or why not, previously assumed exceptions occur. The factor "137" in the magna design is a factor in calculating a precision value for the moon's orbital time. Mayan mathematicians may have arrived at this knowledge intuitively or by tradition.

A major find indicated that Mayans designed Teotihuacan: a Mayan text translated by Mediz Bolio, 1941, written in the 16th century by elders. A figure found frequently at Teotihuacan appears (Fig.1.) It represents 93,600 days, or one hundred times "936." The Mayan text states "13 Katuns (of 7,200 days) are the count of the sky in the great dark church of learning. To ascend "9" is needed."

Seven years were dedicated to combing hills and mountains.
FIG. 1
CHILAM BALAM DE CHUMAYEL
(Translation from Mayan by A. Mediz Bolio)

En el Trece Edenab fue la fundación de la tierra. En el Trece Chen, Ek, se pusieron los cimientos de la Iglesia Mayor, la Casa de aprender en lo oscuro, la Iglesia Mayor del cielo. Así fue fundada aquí también. Trece Katun es su cuenta. De trece fue medida en el ciclo; cuatro pies se quitaron. Nueve pies lo que falta por ir hacia arriba. He aquí que fue dos veces edificada desde el suelo. Cuatro medidas de pie tuvo cuando salió del suelo.
searching for these figures, made from holes pecked in stone to form a double circle and a cruciform cross, often with twenty holes per arm plus a center dot: eighty-one = 9 times 9 (Gaitan, et al, 1974, see Bibliography)

A Univac geodesic-arc computer program was applied, with a polar diameter of 12 million STU's (12,713,557 meters) corrected for the Clark spheroid. Great circles guided us to 37 precalculated marked points, at distances up to 2,750 kilometers from the Great Pyramids of Mexico.

In 1997 a floor was excavated near the "Sun" Pyramid by Linda Manzanilla. At least 18 figures were pecked or scratched into the floor. Before I saw them, I told two witnesses that there should be double, triple, quadruple or more circles. If two circles mean 13 Katuns, then four circles could be 21 Katuns, a count of 151,200 days. Photographs confirmed that these designs are on the previously buried floor.

In 1974, a map (Fig.2) of the “Ceremonial Zone” was drawn in Mayan units. The map shows the number “936” twice. The sum is “1,872.” After a Katun of 7,200 days Mayans used Niktekatun (or “Baktun”) to name a period of 144,000 days. Thirteen Niktekatuns are one Oxlah-katun: 1,872,000 days, a thousand times the marked “1,872,” or 400 cycles of 13 Tuns of 360 days = 5,200 Tuns. Fig.2 was redrawn in 1998.

In the 1990’s excavations revealed a pre columbian concrete floor surrounding the Great Pyramid. Its level was 57 STU’s below the original summit, that fortunately had been conserved. From the secret cave underneath it the Pyramid measures 63 STU's high (see Fig. 3.)
Fig 2

TE'OHTHUHAKAN: A MAYAN TIME-MAP OF THE SOLAR SYSTEM

SOLAR AND STELLAR OSES

MERCURY QUADRANGLE

SATURN

JUPITER

VENUS CYCLES

1872

104 YEARS

216

378

756

TWO SATURN ORBITS

216

378

852

756

NEST OF CIRCUPTULAR STARS

216

720

936

THREE MARS CYCLES

312 YEARS

378

2268

SATURN ORBITS

3 x 756 = 2268

378 DAYS

STANDARD TE'OHTHUHAKAN UNIT: 1.0594 m

© Hugh Harleston, Jr. 1998
MAYAN TREASURE

From the base of the “Moon” pyramid down to the Citadel’s No. 3 pyramid (misnamed *Quetzalcoatl* in Aztec) is 30 vertical STU. For an averaged “Ark” the height could have been marked halfway between the “Moon’s” base and the No.3 pyramid’s base (Tompkins, ’76, pp.238-9, 243, 246, 251.) It was logical that it should mark the level "2,166 STU."

It is marked by the concrete floor 57 units below the summit of the pyramid, currently referred to as the “Sun.” Mayan mathematics suggest it was a Pyramid of Jupiter, and also a scale model of earth’s surface area. Naming at Teotihuacan has been based on unproved assumptions, unfortunately using Aztec terms. “Aztecs” are believed to have come into the Valley of Mexico some 300 years later than the departure of the residents, now speculated to have been 6th to 8th centuries A.D.

A three-dimensional map was made of the “Ceremonial” Zone (Fig.3.) This “numerical box” has a volume equal to its length (2,268) times its width (756) times its 57-STU height. The volume is a number greater than 97 million. In days, it is the equivalent of over a quarter million years.

This Ark’s volume “encloses” a “cargo” of whole numbers, which include: (a) Jupiter orbits of 399 days; (b) Saturn orbits of 378 days; (c) sky meetings of Jupiter with Saturn every 7,182 days; (d) the exact Mayan lunar orbit within 99.999%; (e) 137, the divisor for obtaining the moon’s orbital time; and (f) precision area of earth on a reduced scale of 1:100,000.

Mayans may have managed information systems recreated by geniuses with neuronal computers, called “brains.”

pp.4
MAYAN TREASURE

I believe there were Mayan “Einsteins,” i.e., several super-brains operating at Teotihuacan during its design stages.

In 2,001 another find. A great Plaza was named “of the Moon” because the pyramid was alleged to have that name in Nahuatl (Aztec.) The Aztecs, who showed up centuries later, said their forefathers probably called the mound Meztlicue, “moon pyramid.” Their “memory” was invention. The moon is not seen to the north. This pyramid, the first to be erected, was more likely to have been an observatory for never-setting stars that circle the north star.

On the west side of the “Moon” Plaza are buildings excavated in the 1960’s, one of them assigned an Aztec name: “Palace of the Quetzal Butterfly” (Quetzalpapalotl.) The open patio is surrounded by columns, whose designs do not include a single quetzal bird (Fig.10.) Twenty-eight rectangular facings are carved with profiles of falcons, identified by two double circles that it carries on its beak, confirmed by ornithologists (Fig.4.) The profiled columns bear double-circles in carved stone.

The four circles (see Fig.11) symbolize four times six times seven times nine: 4 x 378, the number 1,512.

1,512 STU's are a walk around the Great Quadrangle of Saturn, eighteen blocks south of the Falcon Patio. The other ten column faces show a combination of figures representing Mayan constellations that appear overhead on May 19th, after midday sun has crossed the zenith at Teotihuacan’s latitude (Calderon, ’84, ’89; cited in “El Universo de Teotihuacan,” 1991, pp. 189-192, re the Paris Codex.)
MAYAN TREASURE

Four panels frame the Falcon patio. In unique Teotihuacan red, murals display a set of figures, resembling an arabic “3,” a dark crescent in its center. Each figure can represent a triple eclipse count of eleven thousand nine hundred sixty days, tabulated in the Dresden Codex (also see "El Universo de Teotihuacan," '87, pp.103, Bibliography)

The three eclipse counts: 9,204 days, plus 1,424 plus 1,332 days = 11,960. Two counts are shown by dimensions in the Saturn Quadrangle (the "Citadel.") The third count appears on the Main Avenue (Street of the "Dead," named by Spanish colonials who didn't know the double meaning of "Miccaotli" in Nahuatl, so associated it with tombs. But the term also means "South to North," the Avenue's orientation.

Each panel presents 52 designs. Four panels can be 208 triple eclipses of 33 years each...almost 7,000 years. Why did Mayans register this number? The full impact of sacred art is felt when we divide 208 x 11,960 (= 2,487,680 days) by two highly significant Teotihuacan displays:

Separation of the two largest pyramids is 720 STU, a count of Jupiter's 399-day orbits to cross one-third of the Zodiac. To cross the Zodiac requires three times 720: 2,160 orbits, ten times 216, a repeating module, the elevation above sea level of the secret cave under the Great Pyramid: 2,288.4 meters = 2,160 STU. Mercury's synodic orbit is given in the Dresden Codex, that registered three counts (Calderon, 1984.) In Teotihuacan it was almost exactly 117 days, 9 x 13, significant Mayan numbers. Dimensions in the "Citadel" (Fig. 6) and elsewhere, show one, two and three synodic orbits: 117, 234, 351 in STU (see The Keystone, '84, p.111, Bibliography.)
MAYAN TREASURE

If we divide the days counted on Falcon Patio murals by 720 times 117 what do we find? First, we learn that Mayans registered numbers of cosmic significance. The number "208" is 1,872 divided by 9, a factor of the Zone length (Fig. 2.) If we divide the total eclipse time in days by the Jupiter number 720, then by Mercury's synodic orbit time of 117 days, we obtain 29.5308642..., the precise lunar orbit to seven decimal places, duplicating that reported by Teeple at Palenque (carved in stone in the "Palace,"), and in the Dresden Codex tables for eclipses from 755 to 2000 A.D. Codex accuracy equals the Naval Observatory data published in Washington, D.C.

In 2001: a tabulation (Fig.5, p.16 below) was made of Mayan day-counts for the anniversaries of periods of 400 Saturn orbits, beginning with the theoretical date in the year 3,114 B.C., which Eric Thompson borrowed from two others (Martinez and Goodman) and renamed as his own count.

The date for the beginning of the last long count of the Mayans was averaged by Thompson, changed two days to make it independent, and proclaimed as the “MGT Constant: August 13, 3,114 B.C., 584,283 days after the initial declared date of the Julian calendar beginning. But the “constant” MGT does not correlate positions of the sun in the Mayan Zodiac as corrected by Calderon (Mexico) in 1986, to replace Severin's erroneous speculative interpretations of 1981.

Calderon set corrected zero date at September 13, -3,114 B.C., 31 days after the MGT date, with a constant of 584,314 days. (Calderon, '82. Also see Fig.5 and Notes, pp. 16-18.) He correlated precolonial Mayan stelae, positions of Venus, stations
of Mars, lunar and post-conquest Mayan dating to show that the introductory glyph carved on stone monuments indicates the position of the sun with respect to star-groups called "constellations." Mayans used *thirteen*, not twelve groups as assigned in the middle east by Arabians and Greeks.

Studies to date seem to have not recognized that Mayan *Halach* kept the most important clues to themselves, memorized. A *Halach* is a person that sees outside and inside simultaneously, and cannot tell a lie. The term comes from *Hal*, “truth.” Doubly truthful is *Hal-Hal*, later abbreviated. Mistranslated by colonials, it was said to mean a “local boss, a commander,” instead of the Mayan designation of “a wise person.”

To be conscious of external and internal conditions requires discipline, non-verbal silent awareness,... presence, the mark of a spiritual leader. An opening to wider awareness can be discovered, a multi-dimensional vision that can be grasped by anyone whose understanding surpasses memorized intellectual knowledge.

Research can permit numerical values of geometrical figures encoded for cosmic counts to be seen. The first is a simple circle whose radius is sixty units. This becomes a dynamic system in movement: a rotating sphere, a scale model of planet earth, deformed by forces that make the pole-to-pole circle shorter than the equatorial circumference.

The reality of our condition in space is captured objectively. It evolves into *seeing* an irrational mathematical constant become rational, an integral number value, perhaps at the speed of...
MAYAN TREASURE

light. However, it seems that Mayans carried this further.

A “simple" number, the product of 4, 6, 7 and 9, holds the key to a cosmic vision that follows real lifelines: those of our planet and its neighbors in an altered solar system. Mayan Einsteins produced a monumental stone computer to freeze relationships so that no earthquake could obliterate them.

The magnitude and separation of its components were so spread out that each of its four basic parts would yield the messages when the information became essential to survival of that most complex of databank sources: the Halach, awakened and doubly-aware. Mayan number systems interlock.

Long before moderns decided to use abbreviated logos Mayans had simplified. Their “corporate logo” was two double circles seen as “earpieces” on figurines, on pottery and murals, repetitively carved on the Falcon Patio columns to show the number “1,512” in code. This same number also appears as 20 times 756 (twenty double circles) on each of the ten west column faces (Fig.10.) 15,120 times ten are: 151,200 days.

One circle is “378;” two are “756,” the center-to-center distance between the two largest pyramids, a linear dimension that is the hypotenuse of Teotihuacan’s design triangle. The sides are “720” and “231” (Figs.2,3,7,8.) The multidimensional interlocks with time: “720” is a count of Jupiter orbits as well as two Tun of 360 days.

Another impressive Mayan combination: 21 Katuns of 7,200 days are 151,200 days, one hundred double earpieces or one
hundred walks around the Great Quadrangle of Saturn. Mayan notations registered one *Niktekatun* -- 144,000 days -- plus one *Katun* -- 7,200 days, plus zero *Tuns* (360 days), zero *Uinals* (20 days) and zero *K’in* (one day) as a basic day-count.

This Long Count: \(1.1.0.0.0\) = 151,200 days, equal to 400 synodic orbits of Saturn, 400 circles, or in word code, "boys."

The Maya-Quiché sacred book – the *Popol-Vuh* – speaks of 400 "boys.” Written in colonial times, this misinterpreted document shows astronomical counts and constellation names in Mayan, making sure that ignorant fanatic invaders could not destroy everything, although they are very close to achieving just that in Mexico and elsewhere, right down to our times.

Tabulation of 400-Saturn intervals (Fig.5 and Notes) proposes a new set of parameters to students. Mayans constructed the side of their Great Quadrangle as the same number for:

* The **circumference in degrees** of a rotating universal sphere of radius “60”:
 \[378\]
* The **area** of each of 120 triangles that form a sphere of circumference 378 STU:
 \[378\]
* Saturn’s orbit in **days**:
 \[378\]
* The **number** of orbits of Jupiter in 21 *Katuns*:
 \[378\]
* The **number of additional days** to correct Jupiter’s count over the 21 *Katuns*:
 \[378\]

[and three other multidimensionals (see Notes, p.18)]

pp.10
MAYAN TREASURE

Some questions for inquisitive minds:

1.) Why is the area of a universal sphere of radius sixty related to the time of the lunar orbit? It is obtained by dividing $120 \times 378 = 45,360$ (area) by $6 \times 16 \times 16 = 29.53125$, within 13 millionths of the Mayan precolumbian count: 29.5308642.

2.) Why do the orbits of the two satellites of Neptune add to earth’s solar year: 365.242199120 days? This information was restricted by NASA since Voyager’s onboard computers reported Triton and Nereid in the 1980’s. Mayans (Calderon/Paris Codex) knew 365.242..., but per Calderon they may have corrected to 365.2422, a difference of one second per year.

3.) Why is the lunar orbit a function of the number used for the hydrogen fines constant: $1 / 137$? Why doesn’t modern physics consider multidimensionals in its equations, but assumes they disappeared in the first second of a questionable, still speculative “big bang” that may turn out to be a whimper?

4.) Why are eclipse cycles and sunspots a function of 23? $23 \times 520 = 11,960$ days for eclipses; 23 earth revolutions around the sun (two x 11-1/2 years) is the double sunspot cycle for maximum activity as a group. Eleven years is an individual sunspot cycle. Both were known to Mayans, using obsidian filters to watch the sun rotate in 27 days (three cubed.)

5.) Why are long-term droughts a function of 312 x 365 earth revolutions? Mayans knew that “good times” were short. They were some 156 years out of 1,248. The last bad drought cycle peaked in 776 A.D. The next Mayan probability is centered on 2024 A.D., to begin around 2,011 and last 26 years.
MAYAN TREASURE

The number “312” is marked in the Great Quadrangle as a four-sided figure, a square whose area is 97,344 (Fig.6.) The third magna Mayan count is 97,344,000 Haab of 365 days, a period of 260 Eras, each 73 Oxlahkatuns of 1,872,000 days.

The ending of the present Long Count (HMC Constant) will be January 22, 2013 (not December of 2,012 alleged by “MGT,” but changed by L. Schele using Sir Eric’s sly tactics.)

6.) Mayans show precession of the equinoxes as 101 Katuns and 13 Zodiac sectors: 727,200 x 13 = 9,453,600 days. Dividing by 365.2422 gives a precession time (backward rotation of the north pole) of 25,883 solar years.

7.) The Nineveh Constant calculation: 2,268 x 1,000,000 divided by 240 = 9,450,000 days. Divided by 365.2422 = 25,873 solar years. Why is the Nineveh -- 2,268 -- equal to the N/S length of Teotihuacan, six Saturn orbits? Did the data come from a common source? Or tradition?

8.) Is the Platonic Great “Year” 25,920 Haab (vague years) = 9,460,800 days = 25,902 solar years? We believe it was earth revolutions, but Plato never said so, nor his confidants. Plato is one Katun more than the Mayan (9,460,800 less 9,453,600 = 7,200.) The difference between Plato and Nineveh is 10,800 days, possibly the original sidereal orbit of Saturn. Were there precision preflood measures on earth?

Additional Mayan data (see Saturn tabulation, Fig.5, p.16):

The lag time of Jupiter behind Saturn’s orbit is 21 days per synodic revolution (i.e., Saturn seen from earth.)
MAYAN TREASURE

This means that each appearance of Saturn from behind the sun will be followed by Jupiter in increasing delays of 21 days. The first time Saturn reappears in 378 days; Jupiter in 399. The second time, after 378 more days, Jupiter appears in 420, or 42 days late. The third time Jupiter will be 63 days late. These are the heights of the three main pyramids, now called “Sun,” “Moon,” and “Quetzalcoatl” in the Aztec language (Nahuatl.) It is evident that no Aztec names should have been applied to Mayan designs.

The sequence continues to add multiples of 21 days, until on the 19th revolution of Saturn the two planets are once more together behind the sun. 19 multiples of “21” are in STU dimensions in the Great Quadrangle of Saturn (the “Citadel.”)

It is intriguing that twelve of these lag numbers mark the Katuns to define 400 Saturns. The Falcon Palace (Quetzalpapalotl) exhibits counts of 21. If we convert Katuns in days to "Long Counts" we see:

The First Long Count 1.1.0.0.0 = 21 Katuns: 151,200 days.
The Second Count is 2.2.0.0.0 = 42 Katuns: 302,400 days.
The Third Count is 3.3.0.0.0 = 63 Katuns: 1,200 Saturns on day No. 453,600. The Katun sequence in sets of 7,200 days follows the same series as day counts in the Great Quadrangle.

Saturn’s anniversaries were registered in Copan and Palenque (9.9.0.0.0 = June 11th, 613 A.D.) The Kahlay Katunob count was renewed at Edzna (10.10.0.0.0 = June, 1027.) Official dates speculated as approximate beginnings at Teotihuacan are +/-200 B.C., with the “Moon” Plaza finished about 200 A.D.

p.13
MAYAN TREASURE

I propose dates were July 1st, 216 B.C. (7.7.0.0.0) and June 21st, 199 A.D. (8.8.0.0.0) – summer solstice (HMC chronological Constant,) when the Falcon Patio may have been dedicated.

I propose Mayans celebrated great festivals on the 12th anniversary: May 11th, 1855 A.D. to mark solar zenital crossing at Latitude 17° North, that included Naranjo (Belice,) Piedras Negras (Guatemala,) Ocosingo (Chiapas,) Monte Alban (Oaxaca) and Juxtlahuaca (Guerrero.) Historians are invited to look for these (see Notes, Fig.5.)

How can we not recognize Mayan genius, when we see that the logo number 1,512 multiplied by Hunab Ku’s number “9” is 13,608: the Jupiter/Saturn conjunctions encapsulated in the Numerical Ark with height 57 STU. 13,608 is also 216 x 63. The date for 3,600 Satsums: 1,360,800 days, is one hundred times the Jupiter/Saturn count, and the No.3 pyramid’s base design is 60 x 60 = 3,600 Square STU.

Teotihuacan’s displays showed us that mathematical equations for the arc segments on an icosa-dodecahedrally marked sphere are functions of the square root of the number 2, of the arctangent of 2 and of ϕ, the golden mean (the square root of 5 plus 1, divided by 2.) A paper was prepared separately for this (Bibliography, Dynamics of the Golden Mean, 2000.)

Below are twenty-two conclusions (Appendix 1) that cover Mayan dimensions, archaeological geodesy and astronomy. It is clear that Mayans did not deify time. They arrived at brilliant correlations to interlock multi-dimensional concepts that mark with high precision long-term repeating celestial events while recognizing that the only objective values that can
be preserved are mathematical relationships.

Ignorant invaders from Europe were incapable of assimilating their expertise, so Mayans very carefully made sure their Halach were not identified by the fanatic robots who for three hundred years attempted to “show feathered natives how to live as we say you should” or be eliminated as “pagans.”

At Teotihuacan they left no glyphs, no perishable language, no documents. They used “virgin speak” – Zuhuy Wak – nonverbal symbolic methodology, identified by Schwaller de Lubicz at Karnak, Egypt, where he found similar displays.

Some moderns have described Mayans as “just one more Mesoamerican culture.”

We must declare that they have earned the right to be acknowledged as a true civilization.

Hugh Harleston, Jr.
Tijuana, B.C., Mexico
(reedited April/2006)
FIG. 5: INTERVALS OF 400 SATURNS RELATED TO TEOTIHUACAN

<table>
<thead>
<tr>
<th>LONG COUNT</th>
<th>DATE</th>
<th>SUN IN: (ZODIAC)</th>
<th>DAYS ZERO (KATUNES)</th>
<th>SATURN (ORBITS)</th>
<th>JÚPITER (ORBITS)</th>
<th>+ DAYS [NOTE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0.0</td>
<td>Sept. 13, -3,114 B.C.</td>
<td>Kutz (Scorpio)</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>4 Ahau</td>
<td>(Zero)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Kumku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.0.0.0</td>
<td>Sept. 2, - 2,700 B.C.</td>
<td>Moan (Libra)</td>
<td>151,200</td>
<td>400</td>
<td>378</td>
<td>378</td>
</tr>
<tr>
<td>1 Ahau</td>
<td>(Libra)</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Dzootz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.0.0.0</td>
<td>Aug. 23, -2,286 B.C.</td>
<td>Moan (Libra)</td>
<td>302,400</td>
<td>800</td>
<td>756</td>
<td>756</td>
</tr>
<tr>
<td>11 Ahau</td>
<td>(Libra)</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Chen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.0.0.0</td>
<td>Aug. 12, -1,872 B.C.</td>
<td>Keh (Virgo)</td>
<td>453,600</td>
<td>1,200</td>
<td>1,134</td>
<td>1,134</td>
</tr>
<tr>
<td>8 Ahau</td>
<td>(Virgo)</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Mac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.0.0.0</td>
<td>Aug. 2, -1,458 B.C.</td>
<td>Keh (Virgo)</td>
<td>604,800</td>
<td>1,600</td>
<td>1,512</td>
<td>1,512</td>
</tr>
<tr>
<td>5 Ahau</td>
<td>(Virgo)</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Kumku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.0.0.0</td>
<td>Jul. 22, -1,044 B.C.</td>
<td>Dzec (Leo/Virgo)</td>
<td>756,000</td>
<td>2,000</td>
<td>1,890</td>
<td>1,890</td>
</tr>
<tr>
<td>2 Ahau</td>
<td>(Leo/Virgo)</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Dzootz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6.0.0.0</td>
<td>Jul. 12, -630 B.C.</td>
<td>Dzootz (Cáncer)</td>
<td>907,200</td>
<td>2,400</td>
<td>2,268</td>
<td>2,268</td>
</tr>
<tr>
<td>12 Ahau</td>
<td>(Cáncer)</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Mol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7.0.0.0</td>
<td>Jul. 1, - 216 A.C.</td>
<td>Dzootz (Cáncer)</td>
<td>1,058,400</td>
<td>2,800</td>
<td>2,646</td>
<td>2,646</td>
</tr>
<tr>
<td>9 Ahau</td>
<td>(Cáncer)</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Mac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8.0.0.0</td>
<td>Jun. 21, 199 A.D.</td>
<td>Aak (Gémini)</td>
<td>1,209,600</td>
<td>3,200</td>
<td>3,024</td>
<td>3,024</td>
</tr>
<tr>
<td>6 Ahau</td>
<td>(Gémini)</td>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Kayab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.9.0.0.0</td>
<td>Jun. 11, 613 A.D.</td>
<td>Aak (Gémini)</td>
<td>1,360,800</td>
<td>3,600</td>
<td>3,402</td>
<td>3,402</td>
</tr>
<tr>
<td>3 Ahau</td>
<td>(Gémini)</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dzootz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.0.0</td>
<td>Jun. 1, 1,027 A.D.</td>
<td>Tzub (Taurus)</td>
<td>1,512,000</td>
<td>4,000</td>
<td>3,780</td>
<td>3,780</td>
</tr>
<tr>
<td>13 Ahau</td>
<td>(Taurus)</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Mol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.11.0.0</td>
<td>May 21, 1,441 A.D.</td>
<td>Kan (Aries-Tauro)</td>
<td>1,663,200</td>
<td>4,400</td>
<td>4,158</td>
<td>4,158</td>
</tr>
<tr>
<td>10 Ahau</td>
<td>(Aries-Tauro)</td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Mac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.12.0.0</td>
<td>May 11, 1,855 A.D.</td>
<td>Kan (Aries-Tauro)</td>
<td>1,814,400</td>
<td>4,800</td>
<td>4,536</td>
<td>4,536</td>
</tr>
<tr>
<td>7 Ahau</td>
<td>(Aries-Tauro)</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Kayab</td>
<td></td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[N- are Notes. See pp. 17 & 18]

[Columns 1, 2, 3 per computer program Maya 2, © - HMCaldoron – 1995, by permission.]

1.) The HMC Chronological Constant (Hector M. Calderon, Mexico) is: 584,314 days after zero on the Julian calendar (Nov.24, - 4,712 B.C.) The “MGT Constant,” borrowed by Eric Thompson from Martinez & Goodman, is 584,283 days (see p. 18.)

2.) Ending of the present Oxlakatun is Eight Katuns after the last of 400 Saturns: May 11, 1855. Special ceremonies may have been carried out on the day of zonal crossing near Latitude 17°-North. Theoretic locations include: Naranjo (Belice;) Lago Peten, Yachilan, and Piedras Negras, Guatemala; Ocosingo and Tonina, Chiapas; Mitla and Monte Alban, Oaxaca; and Juxtlahuaca, Guerrero. Mayans may have kept secret the real reason for their festivals, but not the magnitude of the event. Historians are invited to verify this theory.

3.) NOTES (numbered on Tabulation, Fig.5):

N-1: \(1,512 = 4 \times 378\) = perimeter of the “Citadel,” = four orbits of Saturn = two double circles, earpieces of Halach (wise men that know truth.) Multiplied by one hundred equals 151,200 days, also equal to 21 Katuns. All counts of corresponding Jupiter orbits as well as extra days added to correct each count are functions of 378, the synodic orbit of Saturn, integral multiples of \(6 \times 7 \times 9\).

N-2: \(756\) = two orbits of Saturn, the distance in STU (Standard Teotihuacan Units of 1.0594(6) meters) from the Great Pyramid to the No.2 Pyramid (see Figs. 2, 3, 7 & 8.) On this date Mercury was at inferior conjunction, crossing the sun.

N-2*: New moon; Mars and Mercury at Superior Conjunction.

N-3: \(2,268\) STU = north/south dimension of the “Ceremonial Zone” = 6 Saturn orbits = six “Citadels” = Nineveh Constant (Question: is Nineveh from the same source?)

N-4: Jupiter at Superior Conjunction, behind the sun.

N-5: Mercury at Inferior Conjunction, crossing the sun.

N-6: Full moon. \(13,608\) = number of Jupiter/Saturn conjunctions of 7,182 days “contained” in the volume of the magna design, a “numerical ark”: 756 STU by 2268 long by \(57\) STU high. In addition, 13,608 = \(63 \times 216\), also \(9 \times 1,512\), and further it is \(3 \times 4,536\) (see N-8.) 3,600 = area of the base, Pyramid No.3 (“Citadel”), measuring 60 STU by 60 STU. Multiplied by one hundred, 13,608 = 1,360,800 days = 189 Katunes (half of 378) to reach 3,600 Saturns, or Long Count: 9, 9, 0, 0, 0, corresponding to June 11th, 613 A.D. (HMC Constant,) registered on stelae at Copan and Palenque.

(reedited 16-April-2006)
There may not have been ceremonies at Teotihuacan, due to lack of food during prolonged droughts peaking between 500 and 900 A.D. The abandonment of Teotihuacan is believed by some to be possibly 550 A.D. (Hoffman/2000.) Others theorize that there was no external invasion, only internal problems and that survivors continued on the outskirts of the Pyramidal Zone until late in the 8th century.

N-7: Registered at Edzna (1,027 A.D.) when the alternate “short count” was renewed (the KahlayKatunob of 13 Katunes = 93,600 days. (93,600 x 20 =1,872,000 = one Oxlahkatun.) 936 STU is marked twice in the “Ceremonial Zone” = 1,872 STU.

N-8: 4,536 is also the number of triple Jupiter/Saturn conjunctions (21,600 less 54 = 21,546 days,* that “fit” in the magna volume 97,732,656. Furthermore, 4,566 times 10 = 45,360, area of planet Earth in square STU, scaled at 100,000 to one, also equal to 30 x 1,512, perimeter of the “Citadel” (or “Great Quadrangle of Saturn”.)

N-9: The lag times, in days, of Jupiter “behind” Saturn are the same as the number of Katuns for multiples of 151,200 days. The series is: 21, 42, 63, …378. Jupiter’s orbit is 21 X 19 = 399. All Long Counts here are multiples of 1,512 (4 x 6 x 7 x 9.) One side of the “Citadel” is the same number used to count:

(a) Circumference of a universal circle with radius “60,” \(\pi = 3.15\): 378
(b) Area of each of 120 triangles forming a sphere of circumference: 378
(c) Circumference of the earth, to scale 100,000 to 1: 378
(d) Saturn’s orbit in days: 378
(e) Number of synodic orbits of Jupiter in 21 Katunes: 378
(f) Number of additional days to correct Jupiter over 21 Katunes: 378
(g) Number of triple trips [N-10] of Jupiter in ten magna Arks: 378
(h) Area of each of 20 triangles that form a spherical model of the earth, scaled at 100,000 : 1 = 2,268 = (6) x 378 these are Multidimensional Mayan Mathematical concepts

N-10: For Jupiter to pass through the circle of the Zodiac requires 2,160 orbits of 399 = 861,840 days = 2,280 X 378 = 57 X 10 X 1,512, factors of the magna “Ark.” Ten “Arks” enclose 1,134 circlings of the Zodiac by Jupiter: 3 X 378.

so that 977,326,560 divided by (3 x 861,840)] = 378

All Long Counts computer calculated with Program Maya 2, © – H.M.Calderon-1995. All counts match Mayan solar positions in the Zodiac. All dates given by the MGT “Constant” are in error by one Zodiac Constellation (28-day count) plus 3 days.

[*Triple Jupiter/Saturn conjunction corrections identified by Harleston in 1989 on pp.71-73 of the Dresden Codex.]

(reedited August 09, 2006 under MAYTRESU-05T2ED)
CONCLUSIONS

MAYAN DIMENSIONS AND MEASURES AT TEOTIHUACAN

1.) Mayan chronological counts are directly obtained when metric dimensions are divided by 1.0594(6) m., the STU.

2.) The same counts are encoded as geometrical figures: circles, triangles, squares, rectangles, ellipses (see Fig.11.)

3.) Values are redundant. Significant counts and their factors repeat at widely separated areas (N/S = 2,403 m.; E/W = 801 m.)

4.) A universal message is a cube with sides of “6” whose volume and area are the same number: “216,” which repeats in dimensions.

5.) A second universal: a tetrahedron of height 12 whose volume and area are 216 times the square root of 3.

6.) A third message: a universal circle of radius 60 units with circumference of 378: 6 times 7 times 9. ($\pi = 63/20$.)

7.) Identical dimensional numbers appear in Egypt, China, India, England and Bolivia if measured in STU’s. The “Life of Brahma”
 -- India = $144 \times 2,160 = 311,040 = 360 \times 864$ (Mayan factors.)

ARCHAEOLOGICAL GEODESY

8.) Mayans calculated and marked kilometric distances great circle.

9.) A double circle and cross encodes: 13 Katuns = 93,600 days.

10) Four circles and cross encodes: 21 Katuns = 151,200 days.

11) Circles and cross marked points from which to observe and register Jupiter/Saturn conjunctions, and/or other marked points (Venus at maximum elongation-47°) up to 50 kilometers (47,000 STU.)

ASTRONOMICAL CORRELATIONS

12) Mayans made telescopes from parabolic and spherical mirrors in a darkroom (camara oscura.) They could have seen (a) moons of Jupiter, (b) rings of Saturn and (c) three rings around the M31 galaxy.

13) Mayan constellation symbols appear in Teotihuacan as glyphs and pictographs from Paris Codex (see Figs.7 & 10, below.)

14) Synodic orbital times of Mercury, Venus, Mars, Jupiter, Saturn and the moon were registered accurately.

(reedited under MAYTRESU-05T2ED, 09-August-2006)
15) 21 Katuns = 151,200 days, that mark 400 Saturns of 378 days and 378 Jupiters of 399 days, with a correction of 378 days (see Fig.5.)

16) The series of Katuns follows the same numbers as lag times of Jupiter behind Saturn in days: 21, 42, 63..., 189 (see Fig.5.)

GENERAL CONCLUSIONS

17) The anniversary date of 3,600 Saturns after the initial Long Count at 3,114 B.C. was 9.9.0.0.0 = 1,360,800 days, registered at Copan and Palenque.* It may have been celebrated at Teotihuacan. The anniversary of 4,000 Saturns -- 10.10.0.0.0,-- or 1,512,000 days, was registered at Edzna in 1,027 A.D. to reinstate the 13-Katun count of 93,600 days.) The 57-STU "Ark" volume "contains" 13,608 Jupiter/Saturn conjunctions, Edzna's day-count divided by one hundred. Mayans knew multiples of ten (100, 1000, one million.)

18) Teotihuacan may be a Mayan chronological map of the solar system. The magna design Numerical Ark of height 57 is a volume that encloses: integral orbits of Jupiter, orbits of Saturn and Jupiter/Saturn conjunctions. It also "contains" the lunar orbit, plus triple Jupiter/Saturn conjunctions (every 21,546 days.) Corrections for the latter were identified on pp. 71-73 of the Dresden Codex in 1989. The pictographs of two stars "flying" with double "ribbons" can mean Jupiter/Saturn conjunctions, not "ring numbers." A series of thirteen 54’s defines Teotihuacan dimensions (see p21)

19) An additional design correlation: an “ark” 756x2268x63, height of the Great Pyramid without a building on the summit, is a volume of 108,020,304 cubic STU, equal to two cubic Saturn Quadrangles. The two (or one cube seen in a mirror) form six-sided boxes whose perimeters are 9072 STU x 2 = 18,144: the 12th anniversary of the 400-Saturn day-count, divided by one hundred.

[*Note: Many STU dimensions are found at Palenque, including the level of the entombed personage, which lies at 1.06 meters (one STU) above the floor, marking the distance to the Temple entrance floor a distance of 21 STU, the Jupiter lag-number. This was verified by architect Marcela Paula Cea in 2002. See bibliography.]*

(reedited under MAYTRESU-05T2ED –09-August-2006.)

DISK:MAYTRE-04T2A.DOCHH/06-V-04
20) Mayans inherited information from more ancient sources, but did not deform the data as in other cases. Official dating is 8,000 to 9,000 B.C. (Hammond, 1986.) Similar information can be found around the globe when differing measures are equalized by the Standard Teotihuacan Unit, 1.0594(6) m.

21) "T'ol-Ti-Wak-K'an" can mean “Here, Conscious, in the Place of Sixth-Dimensional Wisdom.” Teotihuacan is a Mayan bridge beyond time leading to better understanding of multidimensionals.

It is the finest example in the Americas of sacred landscape. “Sacred” means “to consecrate religiously,” reconnect with our origin, become aware of objective reality, objective truth, objective consciousness: the mathematical relationships of the cosmos.

22) Multidimensional states of attention can free “time” from its Einsteinian chains. Epigraphers will still have a hard job when it is realized that Mayan glyphs also enclose a series of “numerical arks,” hidden cosmic counts encoded as circles, circular arcs, rectangles, squares, triangles and ellipses. Additional mathematical research may clarify multidimensional enigmas.

[Note: publication of information under Conclusion (19) was presented in lectures, and registered in “Memoria” deposited at Universidad Mesoamericana, San Luis Potosi (May 19, 2000), at Oaxaca (May 21, 2001), & Universidad de Baja California, Tijuana (October 19, 2001.]

Hugh Harleston Jr, Tijuana, B.C., Mexico
22/December/2001
12.19.8.13.11 - 11 Chuen, 9 Keh

(reedited under MAYTRESU-05T2ED – 09-August – 2006)
SELECTED BIBLIOGRAPHY

[Special Note: Papers marked “[LC]” were deposited at the time of issue in the Library of Congress, Washington, D.C. and the Fondren Library, Rice University, Houston, Texas. In each case 100 copies were printed and also distributed to professionals in the fields of Archaeology and Ethnology, plus to selected technically prepared individuals and some thirty libraries in U.S.A. and Mexico.]

BAKER III, George T.

BARRERA Vazquez, Alfredo, y Silvia Rendon.
1972 El Libro de los Libros de Chilam-Balam, Fondo de Cultura Economica, Mexico, D.F.

CALDERON, Hector M. [106 technical papers, partial list: Append.4]
1966 La Ciencia Matematica de los Mayas, Ed.Orion, Mexico, D.F.
1982 (584,314)-Correlacion de la Rueda de Katunes, La Cuenta Larga y las Fechas Cristianas, Grupo Dzibil, Mexico, D.F.
1984 “Possibility that the Maya May Have Recorded a Progressive Acceleration of Mercury.” (Symposium) Archaeoastronomy and Ethnoastronomy in Mesoamerica, UNAM, Mexico D.F.
& Hugh Harleston, Jr. Clarifying the Mayan Zodiac. (A Research Summary) MSS prepared for the American Philosophical Society of Philadelphia, Mexico, D.F.
1989 (Sequences of the Mayan Zodiac, data for reconstruction of the drawing by Harleston in “El Zodiaco Maya.” (see Harleston.)

CEA, Marcela Paula Gnzl, personal comm, recent (2001) INAH measurements of Palenque's tomb evidence STU dimensions (cf.p.20.)

CODEX DRESDEN
1880 (Spanish Edition, Fondo de Cultura Economica, Mexico, 1988.)

CODEX PERESIANUS (PARIS CODEX found by Peres)
1887 (Paris, Leon de Rosny.)
1968 Also SAUER, Francisco, Joseph Stummvoll & Rodolfo Fiedler, Bibliotheque Nationale Paris, Einleitung und Summary (in English) F.Anders, Akademische Druck-u Verlagsanstalt, Graz, Austria.

CORDAN, Wolfgang – Glifos Mayas, Sistema Mérida: cf. insert p.25

DISK:MAYTRE-04T2A/HH/06-V-04
ESCALONA Ramos, Alberto
1940 Cronologia y Astronomia Maya-Mexica. Editora de Revistas, S.A., Editorial Fides, Mexico, D.F. (Mayan sky counts)

GAITAN Meza, Manuel, & Alfonso Morales, Hugh Harleston, Jr. &
1974 G.T.Baker, III., “La Triple Cruz Astronomico de Teotihuacan.” XLI Congreso Int’l. de Americanistas; also Uac-Kan (private) at Mexico, D.F., 37 pp., 16 dwgs., maps & tables. [LC]

GATES, William

HALL, Robert L.

HARLESTON, Jr., Hugh
1981 Did Teotihuacan’s Designers, or their Predecessors, Have a Knowledge of Spherical Trigonometry? (A Research Summary: 1972-1981.) Uac-Kan (Private) Mexico, D.F., 35 pp., dwgs. [LC]
1987 *El Universo de Teotihuacan*. Ed.Orion, Mexico, D.F.
1991 *El Zodiaco Maya*, Ed.Diana, Mexico, D.F.
1996 *Thirteen “Heavens” or Mayan Time Counts?* 12 pp. (MSS)
2000 *Dynamics of the Golden Mean*. (Private), Tijuana, Mexico [LC]
2001 *Una Enciclopedia Maya* (Espacio y Tiempo Unificados en Teotihuacan) 3 Conferencias: Universidad Mesoamericana (San Luis Potosi – May/2000 y Oacaca – May/2001;) Univ. de Baja California (Tijuana – Oct./2001,) Mexico. (See Note, Conclusions, p.21.)

LANGENBERG, D.N. & B.N.Taylor.

MARTINEZ Paredez, Domingo

MEDINA Peralta, Manuel
1974 *Elementos de Astronomia de Posicion*. Ed.Limusa, Mexico.

MEDIZ Bolio, Antonio
1941 (reprint '79) *Libro de Chilam Balam de Chumayel*. UNAM, Mexico, (pp.113)

MILLON, Rene, Bruce Drewitt & George L. Cowgill

MORLEY, Sylvanus G.

OUSPENSKY, P.D.

RECINOS, Adrian
1972 *Popol Vuh – Las Antiguas Historias del Quiche*. Fondo de Cultura Economica, Mexico, D.F.

SCHLEMMER, Alfred E.
1971 “Some Special Aspects of Technological Forecasting.” *Primer Simposio de Pronosticos Tecnologicos, XI Convencion Nacional del Instituto de Ingenieros Quimicos*, Mexico, D.F.
SCHWALLER de LUBICZ, R.A.
1949
Symbol and the Symbolic. Autumn Press, Brookline, Mass. USA

SEVERIN, Gregory M.
1981 “‘The Paris Codex’- Decoding an Astronomical Ephemeris.”

THOMPSON, J. Eric S.

TOMPKINS, Peter, & Hugh Harleston, Jr.

THEON OF SMYRNA

VILLACORTA, J.Antonio et al.
1930 *Codices Mayas* (Codice Tro-Cortesiano/Madrid.) Sociedad de Geografia e Historia de Guatemala, Guatemala City.

ZUKAV, Gary

CORDAN, Wolfgang. *Introducción a los Glifos Mayas (sistema Mérida)*
1969 (Posthumus), edit. R.Kolb, El Manual Moderno, Mexico, D.F.

[NOTE: The 75 references in Appendix 2 represent one-fifth of the archaeological bibliography used in the preparation of this Summary.]
Partial List of Technical Papers by H.M. Calderon, Mexico, D.F.

5.) No.46. “Los Mayas No Inventaron el Cero,” 2 pp.
7.) No.54. “La Tabla de Mercurio,” 9 pp., 2 drawings.
13) No.65. “Fechas de la Cruz de Palenque,” 32 pp., 1 drawing (30/1/’84)
14) No.66. “Las Fechas ‘Cascabel,’” 17 pp., bibliography (19/II/’84)
18) No.85. “Glifo y Nombre Maya de Mercurio,” 10 pp. (26/V/’89)
22) No.103 “La Tabla Zodiacal del Codice Peresiano,” 6 pp. (3/II/’88)
23) No.106 “Fecha de la Probable Colision de Mercurio con el Sol Según Codice de Dresde,” 5 pp. (14/X/’84)
24) ----- “Como Hacian los Mayas la Correccion a la Tabla de Eclipses,” 1 pagina, (12/XI/’91)
25) ----- “Como Predecian los Mayas los Eclipses,” 5 pp., (26/V/’84)
26) ----- “La Prediccion Maya de los Eclipses,” 40 pp.
27) ----- “Tabla de Ek Yum,” 14 pp. (22/II/’85)
28) ----- “Resumen del Calculo del Periodo Sideral de Ek Yum,” 2 pp. (’85)
29) ----- “Los Codices Revelan Que los Mayas Descubrieron Otra Luna, Negra e Invisible,” 2 pp. (20/I/’87)
30) ----- “La Tabla de Jupiter del Codice Dresde,” 7 pp. (01/IX/’90)

Copies of the above papers are in the personal library of the author of this Research Summary. For copies or information regarding reproduction and postage contact: Hugh Harleston, Jr. c/o P.O.Box 43-1192, San Diego, CA 92143, USA
CONVERSION OF MEASUREMENTS: ONE STU=1.0594(6) METERS
(Roundings are less than official map accuracy of +/- 50 cms.)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Meters (Source)</th>
<th>Equivalent STU</th>
<th>Rounded STU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citadel, C. to Cen. West platforms</td>
<td>171 +/- 0.5 (2)</td>
<td>161.4 +/- 0.4</td>
<td>162 = 3x6x9</td>
</tr>
<tr>
<td>Citadel, C. to Cen. South platforms</td>
<td>153 +/- 0.5 (2)</td>
<td>144.4 +/- 0.4</td>
<td>144 = 3x6x8</td>
</tr>
<tr>
<td>Citadel: N&S wall</td>
<td>400 +/- 0.5 (1)</td>
<td>377.6 +/- 0.4</td>
<td>378 = 6x7x9</td>
</tr>
<tr>
<td>Citadel: West wall</td>
<td>400.5 +/- 0.5 (2)</td>
<td>378.1 +/- 0.4</td>
<td>378 = 6x7x9</td>
</tr>
<tr>
<td>“Moon” Pyr. to SE</td>
<td>200 +/- 0.5 (1)</td>
<td>188.8 +/- 0.4</td>
<td>189 = 3x7x9</td>
</tr>
<tr>
<td>Cit. Upper Patio N/S, face-to-face</td>
<td>247.9 +/- 0.5 (2)</td>
<td>233.9 +/- 0.4</td>
<td>234 = 2x9x13</td>
</tr>
<tr>
<td>Cit. W.platform Stair to baseline Quetz. Pyramid</td>
<td>229. +/- 0.5 (2)</td>
<td>216.2 +/- 0.4</td>
<td>216 = 6x6x6</td>
</tr>
<tr>
<td>Cit. Main Stair. Quetz. Pyramid</td>
<td>12.8 +/- 0.1 (4)</td>
<td>12.08 +/- 0.1</td>
<td>12 = 2x2x3</td>
</tr>
<tr>
<td>Cit. Baseline of Quetz. Pyramid</td>
<td>63.5 +/- 0.5 (3)</td>
<td>59.9 +/- 0.4</td>
<td>60 = 3x4x5</td>
</tr>
<tr>
<td>Cit. NW corner Q-Pyr. to c/L main Staircase</td>
<td>31.6 +/- 0.5 (3)</td>
<td>29.8 +/- 0.4</td>
<td>30 = 2x3x5</td>
</tr>
</tbody>
</table>

SOURCE:
(2) Millon, Rene et al. *The Teotihuacan Map*, U.of Texas Press, Vol.1, Parts 1&2, Austin, TX, 1973, Map pp. 76 (Note: map reconstructed from aerial survey photographs, with errors of plus or minus 50 centimeters = 0.5 meters.)
(3) Marquina, Ignacio. *Arquitectura Prehispanica*. Memorias INAH, Lamina 17: La Ciudadela, p.82, Mexico, D.F., 1951 (Topo Map P.Dosal, w/errors)
(4) Steel tape measurements, Harleston & A.Rangel, field notes, June/1980

DISK: MAYTRE-04T2A / HH / 10-V-04 (reedited MAYTRESU-05T2ED – 16/Apr./2006) 27
Fig. 10

Aquarius
Libra
Cancer
Pisces
Pleiades
Artetado
Aquarius

53 cm. = \frac{1}{2} STU

CONSTELLATIONS:
Coz. (Falcon)
Moan (Owl)
Szootz (Vampire Bat)
Venus (1752 Days)
Balam (Jaguar)
Tzabal (Rattle)
Kan (Serpent)
Coz. (Falcon)

20 \times 13 = 260

13 \times 20 = 260

260 + 260 = 520 \; ; \; 520 \times 23 = 11,960

Fig. 15. Composite Western Column: Palace of "QuetzalpapaloTL" - Teotihuacan

© Hugh Harleston, Jr. 1986
MAYAN GEOMETRY
UNIVERSAL CIRCLE OF RADIUS SIXTY

INSCRIBED TRIANGLE INScribed SQUARE SUPERSCRIBED SQUARE

TRIANGLE PERIMETER
3\times104 = 312,
THE "SHORT COUNT"

SQUARE AREA
ONE KATUN

SQUARE AREA
TWO KATUNS

\text{AREA} = 7,200

\text{AREA} = 14,400

© Hugh Harleston Jr. 2001

P. 34
FIG. 12
(Extract:) HARLESTON, Jr., Hugh, *Thirteen “Heavens” or Mayan Time Counts?*
MSS (Abridged), Tijuana, B.C., Mexico, 21/March/1999 (Orig: 9/March/1996)
“...the count of Heaven is 13 Katuns...to ascend use 9’s”

ANALYSIS: JUPITER AND MARS COUNTS PER KATUN OF 7,200 DAYS
(19 SOLAR YEARS PLUS ONE TZOLKIN OF 260 DAYS)

<table>
<thead>
<tr>
<th>KATUN NUMBER</th>
<th>TOTAL DAYS</th>
<th>J</th>
<th>U</th>
<th>P</th>
<th>I</th>
<th>T</th>
<th>E</th>
<th>R</th>
<th>M</th>
<th>A</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>93,600</td>
<td>234 = 9x26</td>
<td>234</td>
<td>117 = 13x9</td>
<td>9x260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>86,400</td>
<td>216 = 9x24</td>
<td>216</td>
<td>108 = 12x9</td>
<td>9x240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>79,200</td>
<td>198 = 9x22</td>
<td>198</td>
<td>99 = 11x9</td>
<td>9x220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>72,000</td>
<td>180 = 9x20</td>
<td>180</td>
<td>90 = 10x9</td>
<td>9x200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>64,800</td>
<td>162 = 9x18</td>
<td>162</td>
<td>81 = 9x9</td>
<td>9x180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>57,600</td>
<td>144 = 9x16</td>
<td>144</td>
<td>72 = 8x9</td>
<td>9x160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>50,400</td>
<td>126 = 9x14</td>
<td>126</td>
<td>63 = 7x9</td>
<td>9x140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>43,200</td>
<td>108 = 9x12</td>
<td>108</td>
<td>54 = 6x9</td>
<td>9x120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>36,000</td>
<td>90 = 9x10</td>
<td>90</td>
<td>45 = 5x9</td>
<td>9x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>28,800</td>
<td>72 = 9x8</td>
<td>72</td>
<td>36 = 4x9</td>
<td>9x80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21,600</td>
<td>54 = 9x6</td>
<td>54</td>
<td>27 = 3x9</td>
<td>9x60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14,400</td>
<td>36 = 9x4</td>
<td>36</td>
<td>18 = 2x9</td>
<td>9x40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7,200</td>
<td>18 = 9x2</td>
<td>18</td>
<td>9 = 1x9</td>
<td>9x20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: **Bold** and underlined counts are principal dimensions of structures at Teotihuacan when measured in *Standard Teotihuacan Units (STU)* of 1.0594(6) meters. [See Conclusions]

OBSERVATIONS

1. Jupiter is the only planet with all orbital counts and all day-corrections being the same numbers. All counts are functions of the number **NINE** (Mayan: *Bolon,*).
2. Mars’ Mayan names were *Chac-Ek* (Red Star) and also Bolon-Tzacab = 9-Rattler.

.P.35 (c) – Hugh Harleston, Jr. - 2002
.DISK: MAYTRE-04T2A.DOC // HH // 09-VIII-06